低糖質食導入による血糖値変動への影響と減量効果の検討（第2報）

前回の検討で100 g中の糖質量が10 g以下の食品を基本とする食事（低糖質食）導入により、症例1：体重76.8 kg（BMI 26.3）から70.6 kg（BMI 24.1）、症例2：体重88.0 kg（BMI 28.4）から82.9 kg（BMI 26.8）と減量が認められた。その後、症例1は80.7 kg（BMI 27.6）、症例2は75.0（BMI 24.2）となった。そこで、再び持続血糖モニター（continuous glucose monitoring; CGM）機器、FreeStyle libre（以下、リプレ）を用いて、食前後での血糖値変動（mean amplitude of glycemic excursions; MAGE）、平均血糖値（mean blood glucose level; MBG）、血糖値の日内変動・日間変動などが如何に変化しているかについて検討した。その結果、症例1では、MAGE、MBGが優位に増加し、血糖値の日内変動・日間変動も増加していた。症例2ではMAGEには有意差がなく、MBGは有意に低下していた。血糖値の日内変動・日間変動には変化がなかった。したがって、糖質を摂取しただけ必ず血糖値は上がり、糖質摂取量が増加すると多くのインスリンが必要となり体重増加に繋がる。逆に糖質摂取が少なければインスリン分泌も少量で足りるため、脂肪由来のエネルギー産生が続くので体脂肪が増加しないことが確認された。

はじめに

前回、通常の食事を行っている肥満1度の2症例に低糖質食（食品100 g中の糖質量が10 g以下

の食品を摂取）を導入して、持続血糖モニター（continuous glucose monitoring; CGM）機器、FreeStyle libre（以下、リプレ）を装着しながら血糖値変動状態について評価した。その結果、食前後での血糖値変動の有意な低下が認められ、ambulatory glucose profile（AGP）から血糖値の日内変動、日間変動の改善が視覚的にも明らかとなった。さらに減量効果も認められた。した
がって、低糖質食は体内的代謝を正常にし、栄養を改善させることに効果を示すと考えられ、様々な疾病の予防・治療に繋がることが示された。その後、この2症例で体重の明らかに変化が認められたため、再びリプレを用いて、食前後の血糖値変動、血糖値の日内変動・日間変動などが如何に変化しているかを検討した。

1. 対象および方法

対象

症例1：29歳男性、身長171cm、体重76.8kg（BMI 26.3）（2019年8月5日時点）。昨年の職場健康診断で脂肪肝を指摘されている以外特記すべき事項なし。症例2：48歳男性、身長176cm、体重88.0kg（BMI 28.4）（2019年10月2日時点）。現病歴・既往歴に特記すべき事項なし。

方法

前回、初めに持続血糖モニター（continuous glucose monitoring; CGM）機器、FreeStyle libre（以下、リプレ）によるモニターを2週間行った。その後、低糖質食を導入した。食事は毎日、朝夕の3食を摂取し、間食は行わなかった。低糖質食の詳細に関しては文献1を参照。低糖質食は4週間行い、後半の2週間はリプレを装着した。低糖質食導入4週間後では症例1は体重70.6kg（BMI 24.1）、症例2は体重82.9kg（BMI 26.8）でそれぞれ6.2kg、5.1kg減量した。その後の2症例の体重、BMIの推移を表1に示すが、症例1では体重増加、症例2では体重減少が認められた。そこで今回、リプレを2週間装着して、食前後の血糖値変動、血糖値の日内変動・日間変動などについて前回の低糖質食導入後半の2週間の結果と比較検討した。

統計学的検討はMann-Whitney U-testを用

<table>
<thead>
<tr>
<th>症例1</th>
<th>症例2</th>
</tr>
</thead>
<tbody>
<tr>
<td>体 重</td>
<td>BMI</td>
</tr>
<tr>
<td>0</td>
<td>70.6</td>
</tr>
<tr>
<td>1</td>
<td>72.8</td>
</tr>
<tr>
<td>2</td>
<td>74.6</td>
</tr>
<tr>
<td>3</td>
<td>74.8</td>
</tr>
<tr>
<td>4</td>
<td>77.4</td>
</tr>
<tr>
<td>5</td>
<td>74.3</td>
</tr>
<tr>
<td>6</td>
<td>78.4</td>
</tr>
<tr>
<td>7</td>
<td>78.5</td>
</tr>
</tbody>
</table>

*低糖質食導入4週間後を0として、後の推移を月数を示している。
症例1の8: 2020年5月1日に測定、症例2の7: 2020年6月1日に測定

2. 結 果

表2に前回低糖質食を4週間行い、後半の2週間リプレを装着した期間と今回、リプレを装着した期間でのmean amplitude of glycemic excursions (MAGE)と平均血糖値（mean blood glucose level; MBG）を示す。症例1ではMAGE、MBGは期間1に比べて期間2では有意な増加（ともにP=0.001）が認められた。症例2ではMAGEは期間3と期間4で有意差はなかったが、MBGは期間3に比較して、期間4では有意に低下した（P=0.001）。

研究の趣旨・研究内容について記載した依頼文書と口頭により研究の目的、研究方法、協力の任意性、プライバシーの保護、参加協力の有無による不利益が被らないことなどを十分に説明して、被検者より文書による承諾を得た。本研究は、鳥根県立大学研究倫理審査委員会の承認を経て実施した。
表2 MAGE, MBGの低糖質食導入時と現在の比較

<table>
<thead>
<tr>
<th>症例1</th>
<th>MAGE</th>
<th>MBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>期間1</td>
<td>24.3</td>
<td>57</td>
</tr>
<tr>
<td>期間2</td>
<td>38.3</td>
<td>94</td>
</tr>
<tr>
<td>期間3</td>
<td>37.3</td>
<td>73</td>
</tr>
<tr>
<td>期間4</td>
<td>21.7</td>
<td>71</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>症例2</th>
<th>MAGE</th>
<th>MBG</th>
</tr>
</thead>
<tbody>
<tr>
<td>期間1</td>
<td>14.3</td>
<td>67</td>
</tr>
<tr>
<td>期間2</td>
<td>42.0</td>
<td>102</td>
</tr>
<tr>
<td>期間3</td>
<td>27.0</td>
<td>88</td>
</tr>
<tr>
<td>期間4</td>
<td>32.0</td>
<td>75</td>
</tr>
</tbody>
</table>

最小値	9.3	65
中央値	15.0	101
最大値	37.3	104

MAGE; mean amplitude of glycemic excursions, MBG; mean blood glucose level
期間1：2019年8月19日～9月2日、期間2：2020年5月11日～25日、期間3：2019年10月26日～2020年5月8日

MAGEは3食間の食前後の血糖変動の平均値とした(3)。詳細な算出法は文献1, 2を参照。リプレはグルコース値を15分ごとに保存するので、その値の1日の平均値をMBGとした。

図1, 2は両症例のリプレ装置期間から得られたambulatory glucose profile (AGP)を示している。症例1では期間1に比べて、期間2では中央値曲線の上昇・下昇幅の上昇、四分位範囲（interquartile range; IQR）や90パーセンタイル・10パーセンタイル曲線間の幅が増加していた（図1）。つまり、血糖値の日内変動、日間変動が明らかに上昇していた。症例2では期間3に比べて、期間4では中央値曲線の低下が認められ、IQRや90パーセンタイル・10パーセンタイル曲

3. 考察

前回、通常の食事を行っている肥満1度の症例に低糖質食を4週間導入したところ、血糖値変動状態の改善とともに、症例1は6.2kg、症例2は5.1kgの減量が認められた。そして、その時点で低糖質食と同様な食事法（ロカボ食）での検討では、肥満3度ではかなり体重が低下し、肥満1度・2度では肥満3度程度の体重減少はないが、減少が認められている。普通体重の人では体重はほとんど変わらないが、痩せている人では逆に体重が増加するという結果であった(5)。被検者の実践した
低糖質食でも、決してカロリー制限を行ってなく、糖質摂取を控えたためその減少したカロリーをタンパク質・脂肪でしっかり補うように指導しているので、低糖質食を継続すれば過正体重以下になることはなく、個人個人の理想的な体重に落ち着くのではないかと期待している。以上の説明を行い、本食事を続けること推奨した。その後の2症例の体重、BMIの推移を表1に示す通りであり、リプレを2週間装着して、食前後の血糖値変動、血糖値の日内変動・日間変動などの現象を調査した。

リプレによる測定値は間質液のグルコース濃度（interstitial fluid glucose concentration; ISFG）を測定値としているので、指先穿刺により専用電極を用いて測定する毛細血管中の血糖値（capillary blood glucose concentration; CBG）との差異が問題視されることがある17）。我々も以前、リプレ装着中でのISFG値とCBGの差についてCBG値を22回測定してISFG値と比較した。その結果、食前後ともにISFG値の方が高く記録される傾向で（0～20 mg/dl）、特に食後1時間くらいがその違いは大きかった18）。前回から今回にかけての検討では、個々の被検者での血糖値の変動などが如何に変化したかというトレンドを評価することが目的であり、決して症例1と2での症例間でISFG値を比較することではない。そのた
め、リプロより測定したISFG値で解析を行った。

症例1では、MAGE、MBGともに期間1に比べて期間2では有意な増加していた。AGPでは期間1に比べて、期間2では中央値曲線の上昇・上下幅の上昇、IQRや90パーセンタイル・10パーセンタイル曲線間幅の増加が認められた。低糖質食導入時には、エネルギー産生が糖質由来より脂質由来にシフトして、脂肪細胞中の中性脂肪がエネルギー産生のために分解放され体脂肪減少したことが減量効果に繋がった。今回はタンパク質・脂質摂取が減少して糖質摂取量の増加したため、食前後の血糖値変動増加、それに伴う血糖値の日内変動・日間変動の増加が認められた。

そのため、低糖質食実践中には低下していたインスリン分泌が、増加して血糖を体脂肪に変え、中性脂肪分解を妨げて、体重増加を来たしたと考えられる。実際、期間2でのAGPは、低糖質食導入前のAGP（文献1に提示）と同様な中央値曲線の大きな上下幅、IQRや90パーセンタイル・10パーセンタイル曲線間幅となっていた。

症例2ではMAGEには有意な変化はなく、MBGは有意に低下した。中央値曲線の低下が認められ、IQRや90パーセンタイル・10パーセンタイル曲線間幅は変わらなかった。糖質摂取量がさらに減少したか否かは明らかでないが、増加していない、低糖質食が続けられている。BMI
も安定しており、理想的な体重に落ち着きつつある状態と考えられる。
以前はタンパク質や脂質を摂取しても血糖値が上昇すると誤解されていたが、現在は食事の栄養素で血糖値を直接上げるのは糖質だけであることは明らかとなっている。糖質を摂取しただけ必ずしも血糖値は上がり、糖質摂取量が増加すると多くのインスリンが分泌されて体重増加に繋がる。逆に糖質摂取が少なければインスリン分泌も少量で足りるので、脂質由来のエネルギー産生が持続して体脂肪が増加しないことが確認された。

利益相反（Conflict of Interest: COI）
開示すべき COI 関係にある企業等はありません。

文 献

1）秦 幸吉、福島加英美、藤田小矢香、低糖質食導入による血糖値変動への影響と減量効果の検討. 島根医学 39: 159-167, 2019
2）秦 幸吉. 食事内容が血糖値変動に及ぼす影響-持続血糖モニター機器 FreeStyle libre を用いた検討. 島根医学 38: 94-100, 2018
3）森田智子、松田昌文. 生活習慣病のための検査値をどうみるか (第20回) MAGE (mean amplitude of glycemic excursions). Life Style Medicine 7: 49-52, 2013
4）島田真理子、仏 妃咲、内田純一、他. 糖質制限食指導の有効性の検討③. 糖尿病 58 Suppl.1: S-268, 2015
5）山田 悟. 糖質制限の真実. 日本人を救う革命的食事法ロカボのすべて. 幻冬舎新書. 2016
7）西村亜希子、原島伸一. フラッシュグルコースモニタリングシステムへの期待. FreeStyle リブレを使いこなす. プラクティス 35: 27-33, 2018
8）江部康二. 江部康二の糖質制限革命 医療、健康、食、そして社会のパラダイムシフト. 東洋経済新報社. 2017